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Nonlinear Surface Waves on the Interface of
Two Non-Kerr-Like Nonlinear Media

Jian-Guo Ma,Senior Member, IEEE,and Zhizhang Chen,Senior Member, IEEE

Abstract—In recent years, there has been growing interest
in studying nonlinear guided-wave propagation as they present
potential, yet not fully-explored, applications for high-speed op-
tical signal processing and transmission. In this paper, analytical
solutions for nonlinear surface waves on the interface of two non-
linear non-Kerr-like media are derived. The dispersion relations
and their relations to the transmission power and initial field
distributions are calculated. Several observations are made on the
behaviors of the surface waves and their potential applications.

Index Terms—Dispersion, non-Kerr-like media, nonlinear me-
dia, surface waves, transmission power.

I. INTRODUCTION

NONLINEAR guided waves in optical waveguides have
recently received growing attention owing to their po-

tential applications to optical signal processing for high-speed
communications and optical computing. In the past several
years, much research has been concentrated on nonlinear
surface waves propagating along the interface between linear
and nonlinear planar structures. The reason for selecting the
planar structures is that the planar structure is one of the
simplest guided-wave structures and is easy for fabrication.
A large body of literature has been devoted to dealing with
the nonlinear problems (see [1]–[11]).

Among the possible nonlinear modes in a planar structure,
self-guided modes are of particular interest to researchers
and engineers, mainly because they have now been observed
experimentally (see [4]). This leads to a possible way to an
all-optical technology in which light can guide and manipulate
light itself. For the Kerr-like nonlinear media (where the
refractive index of the media is proportional to the square
of electric-field intensity), extensive studies have been carried
out in the past few years [1], [2].

Although nonlinear optical effects at the boundary between
two media have already been investigated for a number
of possible geometries with Kerr-like nonlinearity [6]–[9],
wave propagation in non-Kerr-like nonlinear media have not
been studied in a systematical way. In a practical situation,
many materials exhibit a refractive index which varies with
the electric-field intensity raised to a power other than two
[4]–[11]. That is, a practical medium may not be an exact
Kerr-like medium. The actual dependence of the refractive
index on the optical field is intimately related to the physical
process which gives rise to the nonlinearities. In consequence,
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practical applications of nonlinear planar structures to an
optical device design demand that non-Kerr-like nonlinear
structures be studied in details. Some investigations have
been done along this line; however, so far, most of them are
concentrated on wave propagation in a linear medium bounded
by nonlinear claddings or in a nonlinear medium bounded by
linear claddings. Little work has been carried out on the wave
propagation between two nonlinear media except the work
presented by Snyder in [4]. Even in [4], Snyderet al. did not
solve the nonlinear equation directly or analytically. Rather,
they inverted the solution of a linear waveguide to discuss
nonlinear surface waves.

To the authors’ knowledge, no exact analytical and closed-
form solutions for the nonlinear surface waves on the interface
of two non-Kerr-like nonlinear media have been reported
thus far. In this paper, an attempt is made to directly solve
this problem. The analytical solutions are found and the
dispersion relations versus different parameters are calculated.
Some other interesting results regarding field distributions and
transmission power are also obtained.

This paper is organized in the following manner. In Section
II, the analytical solutions are derived. In Section III, results
and discussions based on the analytical solutions for some
cases are presented. Finally, in Section IV, conclusions are
drawn.

II. FIELD SOLUTIONS AND DISPERSION

RELATIONS OF THE SURFACE WAVES

The structure considered is shown in Fig. 1. It is infinite in
both - and -directions. The fields are assumed to be inde-
pendent of these two coordinates. Two semi-infinite nonlinear
media are located in the region and , respectively.
The interface plane is at . The nonlinearities of the two
media are represented by the dependence of the permittivities
on the field intensities in the following form:

I II (1)

where is the linear part of the dielectric constant of the
media and represents the nonlinearity, which can be any
arbitrary real number. When , the medium becomes
the Kerr-like medium I or II, denoting medium I and II,
respectively. is the nonlinear coefficient. If is positive,
the medium becomes a focusing nonlinear medium where the
field has its highest intensity at one location and the maximum
change of the refractive index is at the same location. Ifis
negative, it becomes a defocusing nonlinear medium where
the field does not have the highest intensity at one location
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Fig. 1. The discussed structure.

[1]–[11]. The detailed definitions for these two media can be
found in [3].

Suppose that the wave is propagating along the direction
of the -axis in the form of . Assume that the only
nonzero component of electrical fields is the-component

(2)

From Maxwell’s equations, one can then obtain the magnetic-
field components

(3)

Note that above equations represent TE modes.
The wave equations for each medium can be written as

[3]–[6]

(4)

The analytical solution of (4) for each medium, as shown
in Fig. 1, can be found in a way similar to that described in
[10], [11]. If the medium is a focusing media

(5)

If the medium is a defocusing medium

(6)

Here, is a constant to be determined by the initial field
distributions. It gives the locations of where the field
amplitudes reach maximum in each medium. If the initial field
distributions are established in such a way that for
both media, the maximum fields will occur at the interface,
forming a desired self-focusing surface wave. On the other
hand, if a defocusing medium is desired, should not be set
to zero. Note here that I and II are not independent from
each other as will be shown later.

The above equations can be rewritten, respectively, for each
medium:
for medium I :

I I
I I

I I

when the medium is a focusing medium (7)

I I
I I

I I

when the medium is a defocusing medium (8)

and for medium II :

II II
II II

II II

when the medium is a focusing medium (9)

II II
II II

II II

when the medium is a defocusing medium. (10)

Here

I
I

I I
I

I I (11)

II
II

II II
II

II II (12)

Now that the electric fields are obtained as noted above,
the magnetic-field components can be found from (3). For
instance, for , one can have the following:
for medium I:

I
I

I
I

I I I

when the medium is a focusing medium (13)

I
I

I
I

I I I

when the medium is a defocusing medium (14)

and for medium II:

II
II

II
II

II II II

when the medium is a focusing medium (15)

II
II

II
II

II II II

when the medium is a defocusing medium. (16)



926 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 6, JUNE 1997

At the interface , boundary conditions require that
and be continuous across the interface. As a
result, the following conditions must be satisfied:

I II (17)

I II (18)

Application of the above boundary conditions leads to the fol-
lowing dispersion equations for four combinations of different
media:

Case I: when both media are focusing media

I
I

I I

II
II

II II (19)

I

I
I I

I

II

II
II II

II
(20)

Case II: when both media are defocusing media

I
I

I I

II
II

II II (21)

I

I
I I

I

II

II
II II

II
(22)

Case III: when medium I is defocusing while medium II
is focusing

I
I

I I

II
II

II II (23)

I

I
I I

I

II

II
II II

II
(24)

Case IV: when medium I is focusing while medium II is
defocusing

I
I

I I

II
II

II II (25)

I

I
I I

I

II

II
II II

II
(26)

The above dispersion relations for focusing, defocusing, or
mixed focusing and defocusing media can, respectively, be
rewritten in a simplified form as follows:

Case I:

I
I

I
I

I

II
II

II
II

II

(27)

I
I

II
II (28)

Case II:

I
I

I
I

I

II
II

II
II

II

(29)

I
I

II
II (30)

Case III:

I
I

I
I

I

II
II

II
II

II

(31)

I
I

II
II (32)

Case IV:

I
I

I
I

I

II
II

II
II

II

(33)

I
I

II
II (34)

where
II

I

I

I II (35)
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Now the feasibility of Case IV will be examined. Rewriting
(34), one has

II
II

I
I

(36)

Since the left-side of (36) is always larger than one, (34) has
no rational solutions. Therefore, there exist no surface waves
in Case IV. Note that the assumption of is without the
loss of generality.

For the remaining three cases, the dispersion relations of the
surface waves are then determined by (27)–(32). From these
equations, one can see that given the operating frequency and
the material parameters , , and are not independent
of each other. In each case, there are two different dispersion
equations. Therefore, only one of , , and is free and to
be determined by other conditions, such as initial conditions.
Once it is set, the other two quantities are determined.

For Case I, further simplification of (28) reads

II
II

I
I

(37)

which leads to

II
II

I
I

or

II II

I I

(38)

or

I I II II (39)

That is, in Case I (where both media are focusing media), for a
surface wave to propagate, initial conditions and medium
parameters must satisfy (39).

III. N UMERICAL RESULTS AND DISCUSSIONS

To obtain the insight into the propagation characteristics
associated with the surface waves, numerical calculations have
been performed using the analytical solutions solved above.
This brings about interesting phenomena which is new and
important for an actual design. The general dispersions and
field distributions are quite complicated. Therefore, in the
following, only special cases are considered for simplicity.

A. I and I II

From (14) and (16), it can be seen that for a defocusing
medium, the constant can not be zero (otherwise, will
have infinite values at ). That is, the maximum electric-
field points could not be on the interface of the two defocusing
media. However, for focusing media,I and II are
possible. Take Case I as an example. IfI II , the
dispersion relations, (27) and (28), reduce to

I

I

I
II

II

II

(40)

Fig. 2. The dispersion curves for different�II=�I under the conditions
�I = 3, � = 0:5, x0I = x0II = 0, and �I = �II .

Furthermore, if I II , it becomes

II
I

(41)

The dispersion relation becomes independent ofI II .
Suppose that I II . Then

I II
I

(42)

The dispersion relation becomes linear with frequency.
Its slope, the phase velocity of the surface wave, becomes
a constant, which is only dependent on material parameters

I II II I . As a result, signals propagating through the
interface of the two nonlinear media will not suffer any
distortion and the media become distortionless media.

Fig. 2 shows the propagation constantversus frequency
with various II I in the case. Note that the propagation is
independent of the value ofI and II as long as they are
equal. Figs. 3 and 4 show the related field distributions. As
seen, the fields concentrate mainly in the neighborhood of the
interface, forming the surface waves. In addition, asII I

becomes smaller orbecomes larger, the field concentration is
intensified. Consequently, nonlinear media practically need not
be semi-infinite. The region which contains little field energy
can be removed without affecting the propagation properties.

Fig. 5 shows the propagation constantversus II I for
various . It indicates that for a given , if II I is large
enough, becomes almost independent ofII I .

B. I II

If I II , (32) has no real solutions. For Case III,
where medium I is defocusing and medium II is focusing, the
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Fig. 3. The electric-field distribution for�I = �II = � = 1:5 and various
�II=�I . Here�I = 3, � = 0:5, x0I = x0II = 0, ko = 0:4 �m�1.

Fig. 4. The electric-field distribution for�I = �II = �. Here �I = 3,
� = 0:5, x0I = x0II = 0, and�II=�I = 1:01.

surface waves do not exist. However, (28) and (30) have real
solutions (i.e., surface waves can exist for Cases I and II). In
fact, when I I II II , the two equation are automatically
satisfied. The dispersion relations are then solely determined
by (27) and (29), with I I II II . In the following, Case
I is computed.

Fig. 5. The propagation constant� versus�II=�I for various ko. Here
�I = 3, � = 0:5, x0I = x0II = 0, and �I = �II .

For Case I (both media are focusing), one has

I
I

I
I

I II
II

I
I

II

(43)
Rewriting it gives

I
I

I

II
II

II

I II
I

I

I II

or

I I

II

II

I
II I I

I

II
II I

(44)

Fig. 6 shows the dispersion curves forI II I ,
I , II I It is seen that for each , there exists two

different values of . Thus, two possible modes can propagate
with the same frequency but different phase velocity. There
also exists a maximum frequency beyond which surface waves
cannot propagate in the structure.

C. Transmission Power for Case I (Both
Media Being Focusing Media)

From the field solution (5), one can compute the transmis-
sion power for Case I as follows:

II
II

I
I

II
II

I

I
I

I
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Fig. 6. Dispersion curves for�I = �II . Herex0I = 0:8,�
1=�II
II =�

1=�I
I = 1:2,

� = �II=�I , �I = 2.

II

II
II

II

(45)

Fig. 7 shows the transmission power II
II versus . Unlike

in the linear media, the transmission power is now related
strongly to the frequency. For a given exciting frequency, there
are two possible transmission powers corresponding to the two
modes as indicated before.

By comparing Fig. 6 with Fig. 7, one can find that fre-
quency, transmission power, and propagation constant in the
nonlinear structures are related to each other. If one of them
is given, the other two are determined. For example, if the
frequency is given, the propagation constant and transmission
power can be found (from the two figures). If the propagation
constant is given, the frequency and transmission power can
be found (from the figures). If the transmission power is given,
the propagation constant and frequency can then be found. In
other words, Fig. 6 along with Fig. 7 gives one the look-up
figures for designing the nonlinear transmission media.

IV. CONCLUSION

In this paper, surface waves in the structure consisting
of two power-law nonlinear media are studied. Analytical
expressions for the surface waves are obtained and some cases
are calculated. If the initial conditions are developed in such
a way that the maximum field points are at the interface of
the two nonlinear media (i.e., I II ), the media
become distortionless. In this case, any mode with arbitrary
frequency can be transmitted by the structure without distor-
tions and there is no cutoff frequency. The field distributions
are dependent only on the material parameters. For the other

Fig. 7. Transmission power versusko for �I = �II . Here x0I = 0:8,
�
1=�II
II =�

1=�I
I = 1:2, � = �II=�I ; �I = 2.

cases, the situations are different. For a given frequency there
may exist two related propagation constants, or modes.
They propagate with different phase velocities. However, not
all of the frequencies can form the modes and propagate in
the structure. There is a critical frequency for given material
parameters. Below it, two modes can exist in the structure;
above it, they cannot propagate. In addition, transmission
power, propagation constant, and frequency are dependent
upon each other. These results are useful for designing a
possible new optical devices based on the nonlinear waveguide
structure.
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